科目名	制御工学I	英語科目名	Control Engineering I			
開講年度・学期	平成28年度•前期	対象学科・専攻・学年	電気電子創造工学科 4 年			
授業形態	講義	必修 or 選択	必修			
単位数	1 単位	単位種類	学修単位(講義B)			
担当教員	北野達也	居室(もしくは所属)	電気・物質棟1階			
電話	内線 241	E-mail	kitano@小山高専ドメイン名			
			授業到達目標との対応			
授業の到達目標			小山高専の 学習・教育到達 JABEE 基準 教育方針 目標(JABEE)			
1. ラプラス変換・返る。	逆変換により、簡単な行	微分方程式の解が求められ	4	А	d−1, g	
	対、ブロック線図が扱え	 Lる。	4	А	d−1, g	
3. ステムの時間応答	・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	ン、基本問題を解ける。	4	А	d−1, g	
4. システムの安定性	tを判別し、基本問題を		4	Α	d−1, g	
各到達目標に対する達成度の具体的な評価方法						
	引試験60%以上の得点					
到達目標3,4 定期試験60%以上の得点で達成とする。						
評価方法						
科目としての総合成績は、中間試験(50%)、定期試験(50%)で評価する。						
授業内容	RIO. L. LEIDENSY (CO.)	授業内容に対する自学自習			自学自習時間	
		制御工学で用いられる数学、ラプラス変換、逆ラプ 1			<u> птпымін</u> 1	
1. 咖啡工子疗酬		ラス変換を理解することができる。			'	
2. 電気系の動的システムと数式モデル		電気系の動的システムを微分法方程式で表現し、電気回路の数式モデル化できる。			1	
│ │ 3.機械系の動的システムと機械系の数│					1	
式モデル		動方程式を数式モデル化できる。				
4. 数式モデルの利点・一般形		電気系、機械系のモデルを複合的に扱い、統一モデ ルとしてとらえることができる。			1	
5. 伝達関数の定義		簡単なモデルの伝達関数を理解することができる。			1	
6. 基本的な伝達関数		比例・積分・微分・1次遅れ・2次遅れの基本的な 伝達関数を理解することができる。			1	
7. ブロック線図とシステム結合		伝達関数をブロック線図で表現することができる。			1	
8. 前期中間試験		中間試験			1	
9. 前期中間試験の解説および動的システムの時間応答		動的システムに単位インパルス・ステップ入力を加 1 えたときにおこる、時間応答を理解することができる。			1	
10. インパルス応答と伝達関数		動的システムに単位インパルスを加えたときの応 答を理解することができる。			1	
11. 動的システムの安定性		安定性の定義を理解するこ			1	
12. 動的システムの安定判別		安定性の定義を利用して、安定判別することができる。			1	
		周波数伝達関数を理解し、 ト軌跡で表現できる。	ベクトル軌跡、	、ナイキス	1	
		一次遅れ系のボード線図を理解することができる。			1	
		二次遅れ系のボード線図を理解することができる。			1	
定期試験、定期試験		<u> </u>	· / _ /			
ACAMBARANTE INC.			白党白	習時間合計	15	
キーワード		チュエータ パワーエレクト				
教科書	│機構、センサ、アクチュエータ、パワーエレクトロニクス、コンピュータ制御 │斉藤制海 「制御工学 第2版」 森北出版					
参考書 小林伸明「基礎制御工学」共立出版 吉川恒夫「古典制御論」昭晃堂 他						
カリキュラム中の位置づけ						
前年度までの関連科目		電気回路Ⅲ,Ⅳ 電子回路Ⅰ,Ⅱ				
現学年の関連科目	1	■ 電気回路皿, IV 電子回路I, II 制御工学II、デジタル制御工学				
次年度以降の関連科目	1			三子 材料 是		
	次年度以降の関連科目 電気電子製図、集積回路設計、電気電子材料、量子力学 連絡事項					
1. 講義を中心として、適宜課題を与える。						

- 1. 講義を中心として、適宜課題を与える。 2. 理解困難な点は随時学習相談に応じる。電子メールでも受け付ける。 シラバス作成年月日 平成28年2月9日作成